The microbiota-gut-kidney axis mediates host osmoregulation in a small desert mammal

微生物-肠-肾轴介导小型沙漠哺乳动物宿主渗透调节

阅读:8
作者:Zahra Nouri #, Xue-Ying Zhang #, Saeid Khakisahneh, Abraham Allan Degen, De-Hua Wang

Abstract

Regulating sodium and water balances is crucial for survival of small, desert mammals. Studies demonstrate that the gut microbiota and their metabolites are involved in host energy homeostasis, but little is known on the interactions among salt loading, gut microbiota, and osmoregulation. The aim of this study was to fill this gap. Mongolian gerbils (Meriones unguiculatus) were offered drinking water (Con) and either water containing moderate (4%, MS) or high NaCl (8%, HS) ad libitum. Intake of HS reduced α diversity of the microbial community and, at the genus level, reduced the relative abundances of Rikenella and Christensenella but increased Atopobium. To confirm the function of gut microbiota in host osmoregulation, we transplanted caecal microbiota in HS gerbils. To cope with salt loading, the gerbils concentrated urine, resulting in negative energy balance and systemic inflammation. The HS gerbils increased hypothalamic arginine vasopressin and intestinal and renal aquaporin 2 to support water retention, and reduced intestinal and renal epithelial sodium channel α to promote sodium excretion. However, HS gerbils with caecal microbiota transplant (CMT) from Con donors maintained energy balance and osmoregulation, and had a much reduced systemic inflammation. Further, CMT from Con donors to HS recipients reshaped the gut microbiota, particularly by reducing Parabacteroides distasonis and Prevotella copri, and increasing Lactobacillus reuteri abundances, with a resulting increase in bacterial metabolites such as butyrate. These findings highlight a vital role of the microbiota-gut-kidney axis in mediating salt-related osmoregulation, allowing small mammals to adapt to high salt loads in a desert habitat.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。