Endogenous analgesic action of the pontospinal noradrenergic system spatially restricts and temporally delays the progression of neuropathic pain following tibial nerve injury

脑桥脊髓去甲肾上腺素能系统的内源性镇痛作用在空间上限制了胫神经损伤后神经性疼痛的进展并在时间上延缓了进展

阅读:4
作者:S W Hughes, L Hickey, R P Hulse, B M Lumb, A E Pickering

Abstract

Pontospinal noradrenergic neurons form part of an endogenous analgesic system that suppresses acute pain, but there is conflicting evidence about its role in neuropathic pain. We investigated the chronology of descending noradrenergic control during the development of a neuropathic pain phenotype in rats following tibial nerve transection (TNT). A lumbar intrathecal cannula was implanted at the time of nerve injury allowing administration of selective α-adrenoceptor (α-AR) antagonists to sequentially assay their effects upon the expression of allodynia and hyperalgesia. Following TNT animals progressively developed mechanical and cold allodynia (by day 10) and subsequently heat hypersensitivity (day 17). Blockade of α2-AR with intrathecal yohimbine (30 μg) revealed earlier ipsilateral sensitization of all modalities while prazosin (30 μg, α1-AR) was without effect. Established allodynia (by day 21) was partly reversed by the re-uptake inhibitor reboxetine (5 μg, i.t.) but yohimbine no longer had any sensitising effect. This loss of effect coincided with a reduction in the descending noradrenergic innervation of the ipsilateral lumbar dorsal horn. Yohimbine reversibly unmasked contralateral hindlimb allodynia and hyperalgesia of all modalities and increased dorsal horn c-fos expression to an innocuous brush stimulus. Contralateral thermal hyperalgesia was also reversibly uncovered by yohimbine administration in a contact heat ramp paradigm in anaesthetised TNT rats. Following TNT there is an engagement of inhibitory α2-AR-mediated noradrenergic tone which completely masks contralateral and transiently suppresses the development of ipsilateral sensitization. This endogenous analgesic system plays a key role in shaping the spatial and temporal expression of the neuropathic pain phenotype after nerve injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。