De novo sequencing, assembly and characterisation of Aloe vera transcriptome and analysis of expression profiles of genes related to saponin and anthraquinone metabolism

芦荟转录组的从头测序、组装和表征以及与皂苷和蒽醌代谢相关的基因表达谱分析

阅读:6
作者:Pragati Choudhri, Muniya Rani, Rajender S Sangwan, Ravinder Kumar, Anil Kumar, Vinod Chhokar

Background

Aloe vera is a perennial, succulent, drought-resistant plant that exhibits many pharmacological characteristics such as wound healing ability against skin burns, anti-ulcer, anti-inflammatory, anti-tumor, anti-viral, anti-hypercholesterolemic, anti-hyperglycemic, anti-asthmatic and much more. Despite great medicinal worth, little genomic information is available on Aloe vera. This study is an initiative to explore the full-scale functional genomics of Aloe vera by generating whole transcriptome sequence database, using Illumina HiSeq technology and its progressive annotation specifically with respect to the metabolic specificity of the plant.

Conclusions

This is the first transcriptome database of Aloe vera and can be potentially utilized to characterize the genes involved in the biosynthesis of important secondary metabolites, metabolic regulation, signal transduction mechanism, understanding function of a particular gene in the biology and physiology of plant of this species as well as other species of Aloe genus.

Results

Transcriptome sequencing of root and leaf tissue of Aloe vera was performed using Illumina paired-end sequencing technology. De novo assembly of high quality paired-end reads, resulted into 1,61,733 and 2,21,792 transcripts with mean length of 709 and 714 nucleotides for root and leaf respectively. The non-redundant transcripts were clustered using CD-HIT-EST, yielding a total of 1,13,063 and 1,41,310 unigenes for root and leaf respectively. A total of 6114 and 6527 CDS for root and leaf tissue were enriched into 24 different biological pathway categories using KEGG pathway database. DGE profile prepared by calculating FPKM values was analyzed for differential expression of specific gene encoding enzymes involved in secondary metabolite biosynthesis. Sixteen putative genes related to saponin, lignin, anthraquinone, and carotenoid biosynthesis were selected for quantitative expression by real-time PCR. DGE as well as qRT PCR expression analysis represented up-regulation of secondary metabolic genes in root as compared to leaf. Furthermore maximum number of genes was found to be up-regulated after the induction of methyl jasmonate, which stipulates the association of secondary metabolite synthesis with the plant's defense mechanism during stress. Various transcription factors including bHLH, NAC, MYB were identified by searching predicted CDS against PlantTFdb. Conclusions: This is the first transcriptome database of Aloe vera and can be potentially utilized to characterize the genes involved in the biosynthesis of important secondary metabolites, metabolic regulation, signal transduction mechanism, understanding function of a particular gene in the biology and physiology of plant of this species as well as other species of Aloe genus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。