Orexin facilitates the ventilatory and behavioral responses of rats to hypoxia

Orexin 促进大鼠对缺氧的通气和行为反应

阅读:5
作者:Richard L Spinieli, Ruwaida Ben Musa, Jennifer Cornelius-Green, Eileen M Hasser, Kevin J Cummings

Abstract

Orexin neurons are sensitive to CO2 and contribute to cardiorespiratory homeostasis as well as sensorimotor control. Whether orexin facilitates respiratory and behavioral responses to acute hypoxia is unclear. We hypothesized that orexin neurons are activated by acute hypoxia and that orexin facilitates the hypoxic ventilatory response (HVR), as well as the arterial blood pressure (ABP) and behavioral (movement) responses to acute hypoxia. We further hypothesized that orexin has greater effects in the active phase of the rat circadian cycle, when orexin neurons have high activity. Using whole body plethysmography with EEG, EMG, and the dual-orexin receptor (OxR) antagonist suvorexant (20 mg/kg ip), we determined the effect of OxR blockade on the respiratory, ABP, and behavioral responses of adult rats to acute, graded hypoxia ([Formula: see text]= 0.15, 0.13, 0.11, and 0.09) and hyperoxic hypercapnia ([Formula: see text]= 0.05; [Formula: see text]= 0.95). OxR blockade had no effect on eupnea. OxR blockade significantly reduced the HVR in both inactive and active phases, with a stronger effect in the active phase. OxR blockade reduced the behavioral response to acute hypoxia in the active phase. The central component of the ventilatory and the ABP responses to hypercapnia were reduced by OxR blockade solely in the inactive phase. In the inactive phase, hypoxia activated ∼10% of orexin neurons in the perifornical hypothalamus. These data suggest that orexin neurons participate in the peripheral chemoreflex to facilitate the ventilatory and behavioral responses to acute hypoxia in rats, particularly in the active phase. Orexin also facilitates central chemoreflex responses to CO2 in the inactive phase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。