Nanoparticles with dense poly(ethylene glycol) coatings with near neutral charge are maximally transported across lymphatics and to the lymph nodes

具有致密聚乙二醇涂层且接近中性电荷的纳米粒子可最大限度地跨淋巴系统运输至淋巴结

阅读:4
作者:Jacob McCright, Colin Skeen, Jenny Yarmovsky, Katharina Maisel

Significance

Lymphatic vessels are an emerging target for drug delivery both in the context of modulating immune responses and enhancing bioavailability by avoiding first pass hepatic metabolism after oral delivery. Lymphatic vessels are the natural conduits from peripheral tissues to the lymph nodes, where the adaptive immune response is shaped, and eventually to systemic circulation via the thoracic duct. Lymphatics can be targeted via nanoparticles, but the surface chemistry required to maximize nanoparticle transport by lymphatics vessels remains poorly understood. Here, we demonstrate that coating nanoparticles with hydrophilic polyethylene glycol (PEG) effectively enhances their transport across lymphatic endothelial cells in vitro and in vivo and that both paracellular and micropinocytosis mechanisms underly this transport. We found that dense PEG coatings maximize lymphatic transport of nanoparticles, thus providing new material design criteria for lymphatic targeted drug delivery.

Statement of significance

Lymphatic vessels are an emerging target for drug delivery both in the context of modulating immune responses and enhancing bioavailability by avoiding first pass hepatic metabolism after oral delivery. Lymphatic vessels are the natural conduits from peripheral tissues to the lymph nodes, where the adaptive immune response is shaped, and eventually to systemic circulation via the thoracic duct. Lymphatics can be targeted via nanoparticles, but the surface chemistry required to maximize nanoparticle transport by lymphatics vessels remains poorly understood. Here, we demonstrate that coating nanoparticles with hydrophilic polyethylene glycol (PEG) effectively enhances their transport across lymphatic endothelial cells in vitro and in vivo and that both paracellular and micropinocytosis mechanisms underly this transport. We found that dense PEG coatings maximize lymphatic transport of nanoparticles, thus providing new material design criteria for lymphatic targeted drug delivery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。