Tea polyphenols alleviates acetochlor-induced apoptosis and necroptosis via ROS/MAPK/NF-κB signaling in Ctenopharyngodon idellus kidney cells

茶多酚通过 ROS/MAPK/NF-κB 信号减轻乙草胺诱导的草鱼肾细胞凋亡和坏死性凋亡

阅读:4
作者:Xia Zhao, Xu Shi, Qingqing Liu, Xiaojing Li

Abstract

Overuse of acetochlor pollutes soil and rivers, causing threats to the ecosystem. Studies found that acetochlor exposure could damage multiple organs and tissues in fish and mammal. Tea polyphenols (TP), a natural antioxidant that extracted from tea, has been widely used in food and feed additions. However, the mechanism by which acetochlor causes tissue damage is unclear, and its mitigating agent has yet to be developed. Therefore, we established acetochlor exposure and TP mitigation models by treating Ctenopharyngodon idellus kidney (CIK) cells with 20 μM acetochlor and/or 2.5 μg/mL TP for 24 h, and detected the programmed cell death and its related pathways. The results showed that acetochlor exposure modified antioxidant enzyme activities, induced oxidative stress, resulted in the decline of MMP and ATP levels, enhanced glycolysis and lactate accumulation, and triggered apoptosis and necroptosis in CIK cells. However, TP could inhibit CYP450s expression, activate Nrf2 pathway, enhance antioxidant capacity, further effectively alleviate acetochlor-induced CIK cell death. Overall, the present study proved that acetochlor exposure triggered mitochondrial damage and lactate accumulation-mediated apoptosis and necroptosis through CYP450s/ROS/MAPK/NF-κB pathway. Furthermore, TP could alleviate effectively cell death through relieving oxidative stress and lightening Warburg-like effect.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。