Simultaneous co-overexpression of Saccharomyces cerevisiae septins Cdc3 and Cdc10 drives pervasive, phospholipid-, and tag-dependent plasma membrane localization

酿酒酵母隔膜蛋白 Cdc3 和 Cdc10 同时过表达可驱动普遍的、磷脂和标签依赖的质膜定位

阅读:5
作者:Aleyna Benson, Michael McMurray

Abstract

Septin proteins contribute to many eukaryotic processes involving cellular membranes. In the budding yeast Saccharomyces cerevisiae, septin hetero-oligomers interact with the plasma membrane (PM) almost exclusively at the future site of cytokinesis. While multiple mechanisms of membrane recruitment have been identified, including direct interactions with specific phospholipids and curvature-sensitive interactions via amphipathic helices, these do not fully explain why yeast septins do not localize all over the inner leaflet of the PM. While engineering an inducible split-yellow fluorescent protein (YFP) system to measure the kinetics of yeast septin complex assembly, we found that ectopic co-overexpression of two tagged septins, Cdc3 and Cdc10, resulted in nearly uniform PM localization, as well as perturbation of endogenous septin function. Septin localization and function in gametogenesis were also perturbed. PM localization required the C-terminal YFP fragment fused to the C terminus of Cdc3, the septin-associated kinases Cla4 and Gin4, and phosphotidylinositol-4,5-bis-phosphate (PI[4,5]P2 ), but not the putative PI(4,5)P2 -binding residues in Cdc3. Endogenous Cdc10 was recruited to the PM, likely contributing to the functional interference. PM-localized septins did not exchange with the cytosolic pool, indicative of stable polymers. These findings provide new clues as to what normally restricts septin localization to specific membranes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。