MyD88 Deficiency, but Not Gut Microbiota Depletion, Is Sufficient to Modulate the Blood-Brain Barrier Function in the Mediobasal Hypothalamus

MyD88 缺乏(而非肠道微生物群耗竭)足以调节下丘脑内侧基底节的血脑屏障功能

阅读:5
作者:Christina N Heiss, Ellinor Gravert, Matilda Hultén, Louise E Olofsson

Abstract

Circumventricular organs (CVOs), including the mediobasal hypothalamus (MBH), have an incomplete blood-brain barrier (BBB). In this study, we determined if the BBB function in the MBH is modulated by the gut microbiota or by the Toll-like receptor (TLR) adapter proteins TRIF or MyD88 signaling. By injecting mice with Evans blue, a marker for BBB permeability, we show that germ-free (GF) and conventionally raised (CONV-R) mice did not differ in the number of Evans blue-positive cells in MBH. Acute modulation of the gut microbiota did not change the number of Evans blue-positive cells. In contrast, CONV-R Myd88-/- and Trif-/- mice had a reduced number of cells in direct contact to the circulation compared to wildtype (WT) mice. This was accompanied by increased tight junction proteins in the blood vessels in Myd88-/- mice. To further characterize the BBB function, we injected WT and Myd88 -/- CONV-R mice as well as WT GF mice with monosodium glutamate (MSG), a neurotoxin that does not cross the BBB. While MSG caused vast cell death in the MBH in CONV-R and GF WT mice, Myd88 -/- mice were protected from such cell death suggesting that fewer cells are exposed to the neurotoxin in the Myd88 -/- mice. Taken together, our results suggest that MyD88 deficiency, but not gut microbiota depletion, is sufficient to modulate the BBB function in the MBH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。