Elevated DLL3 in stomach cancer by tumor-associated macrophages enhances cancer-cell proliferation and cytokine secretion of macrophages

胃癌中肿瘤相关巨噬细胞升高的 DLL3 可增强癌细胞增殖和巨噬细胞的细胞因子分泌

阅读:7
作者:Jian-Bin Ye, Jun-Jie Wen, Dan-Lin Wu, Bing-Xin Hu, Mei-Qun Luo, Yan-Qing Lin, Yun-Shan Ning, Yan Li

Background

The notch signal pathway is important in the development of both tumor-associated macrophages (TAMs) and stomach cancer, but how Notch signaling affects TAMs in stomach cancer is barely understood.

Conclusions

This is evidence that DLL3 regulates macrophages in stomach cancer, suggesting that DLL3 may be a novel and potential target for stomach-cancer therapy.

Methods

The expressions of Notch1, Notch2, Notch3, Notch4, hes family bHLH transcription factor 1 (Hes1), and delta-like canonical Notch ligand 3 (DLL3) were detected by Western blot and the expressions of interleukin (IL)-10, IL-12, and IL1-β were detected using enzyme-linked immunosorbent assay after the co-culture of macrophages and stomach-cancer cells. The proliferation and migration of cancer cells were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and scratch assay, respectively, and the cell cycle was detected using Annexin V/propidium iodide assay. The protein interactions with DLL3 were detected using co-immunoprecipitation and mass spectrometry.

Results

The co-culture of macrophages and stomach-cancer cells MKN45 and BGC823 could enhance cell proliferation accompanied by the activation of Notch1/Notch2 signaling and upregulation of DLL3. Notch signaling gamma-secretase inhibitor (DAPT) blocked this process. The overexpression of DLL3 in stomach-cancer cells could promote the proliferation of cancer cells, enhance the activation of Notch1/Notch2 signaling, induce the expression of IL-33, lead to the degradation of galectin-3-binding protein (LG3BP) and heat shock cognate 71 kDa protein (HSPA8), and result in elevated IL-1β, IL-12, and IL-10 secretion by macrophages. Higher expression of DLL3 or IL-33 could lead to a lower survival rate based on University of California, Santa Cruz Xena Functional Genomics Explorer and The Cancer Genome Atlas data set. Conclusions: This is evidence that DLL3 regulates macrophages in stomach cancer, suggesting that DLL3 may be a novel and potential target for stomach-cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。