Pituitary Lineage Differentiation from Human Induced Pluripotent Stem Cells in 2D and 3D Cultures

人类诱导性多能干细胞在二维和三维培养中的垂体谱系分化

阅读:7
作者:Yu Zhou, Robert R A Wilson, Abinav Udaiyar, Jerri McLemore, Hooman Sadri-Ardekani, Tracy Criswell

Abstract

Despite its small size, the pituitary gland plays a central role in the maintenance of normal homeostasis of most physiological systems through its regulation of the function of other endocrine glands. The complexity of the anterior pituitary gland, due to its composition of several different hormone-secreting cell types, begets a plethora of disorders and pathologies due primarily to hyposecretion or hypersecretion of hormones. The gonadotrophs, which make up less than 5% of the total number of cells in the anterior pituitary, serve to regulate gonad development and sexual reproduction in males and females. Despite the increased research on the development of models to study pituitary function within the last decade, a model specifically designed to study the gonadotrophs is still lacking. The development of organoid technology has facilitated research in the field of personalized medicine and physiological testing using patient-derived cells. The ability to produce pituitary organoids would allow researchers to construct an in vitro model of the human hypothalamic-pituitary-gonadal or hypothalamic-pituitary-adrenal axis to use in further fertility or endocrine research. The application of this technology in patients could revolutionize the treatment of infertility and a variety of neuroendocrine disorders. The impetus behind this study was to develop a pituitary-like organoid consisting only of gonadotrophs. Despite the lack of success in differentiating gonadotrophs, pituitary-like organoids were differentiated from human-induced pluripotent stem cells. In addition, two-dimensional and three-dimensional differentiated cultures were characterized and compared to human adult cadaveric pituitary tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。