CTRP12 Ameliorated Lipopolysaccharide-Induced Cardiomyocyte Injury

CTRP12 改善脂多糖诱导的心肌细胞损伤

阅读:5
作者:Meng-Qiao Zhou, E Jin, Jing Wu, Fei Ren, Yu-Zhi Yang, Dong-Dong Duan

Abstract

C1q/tumor necrosis factor (TNF)-related protein 12 (CTRP12) is a secretory protein that participates in the regulation of glucose and lipid metabolism in obesity and diabetes. Its role in cardiovascular disease, particularly sepsis-induced cardiac injury, is unclear. Here, we stimulated cardiomyocytes with lipopolysaccharide (LPS) to establish an in vitro cardiomyocyte injury model and CTRP12 was overexpressed with an adenovirus delivery system. Overexpression of CTRP12 reduced the transcription and release of pro-inflammatory cytokines from LPS-stimulated cardiomyocytes, including TNFα, interleukin-1 (IL-1), and IL-6. Reactive oxygen species (ROS) level increased and the oxidation/redox system was disturbed in LPS-stimulated cardiomyocytes, as evident from the decrease in superoxide dismutase activity and an increase in reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and malondialdehyde level. CTRP12 overexpression decreased the increasing level of ROS and ameliorated the unbalance in the oxidation/redox system in LPS-stimulated cardiomyocytes. The viability of cardiomyocytes decreased after LPS stimulation, and the cells underwent apoptosis. CTRP12-overexpressing cardiomyocytes showed a decrease in the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)-positive cells, and the ratio of B cell lymphoma (Bcl)-1/Bax in these cells was recovered. In comparison with the control group, LPS-stimulated cardiomyocytes showed reduced expression of nuclear factor E2-related factor 2 (NRF2), while CTRP12-overexpressing cardiomyocytes showed elevated NRF2 expression. Small-interfering RNA-mediated silencing of NRF2 expression in cardiomyocytes resulted in the inhibition of the protective effects of CTRP12. Thus, CTRP12 ameliorated injury in LPS-stimulated cardiomyocytes in an NRF2-dependent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。