Effects of chain length and geometry on the activation of DNA damage bypass by polyubiquitylated PCNA

链长和几何结构对多泛素化 PCNA 激活 DNA 损伤旁路的影响

阅读:4
作者:Tomio S Takahashi, Hans-Peter Wollscheid, Jonathan Lowther, Helle D Ulrich

Abstract

Ubiquitylation of the eukaryotic sliding clamp, PCNA, activates a pathway of DNA damage bypass that facilitates the replication of damaged DNA. In its monoubiquitylated form, PCNA recruits a set of damage-tolerant DNA polymerases for translesion synthesis. Alternatively, modification by K63-linked polyubiquitylation triggers a recombinogenic process involving template switching. Despite the identification of proteins interacting preferentially with polyubiquitylated PCNA, the molecular function of the chain and the relevance of its K63-linkage are poorly understood. Using genetically engineered mimics of polyubiquitylated PCNA, we have now examined the properties of the ubiquitin chain required for damage bypass in budding yeast. By varying key parameters such as the geometry of the junction, cleavability and capacity for branching, we demonstrate that either the structure of the ubiquitin-ubiquitin junction or its dynamic assembly or disassembly at the site of action exert a critical impact on damage bypass, even though known effectors of polyubiquitylated PCNA are not strictly linkage-selective. Moreover, we found that a single K63-junction supports substantial template switching activity, irrespective of its attachment site on PCNA. Our findings provide insight into the interrelationship between the two branches of damage bypass and suggest the existence of a yet unidentified, highly linkage-selective receptor of polyubiquitylated PCNA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。