Osteopontin contributes to late-onset asthma phenotypes in adult asthma patients

骨桥蛋白导致成年哮喘患者出现晚发型哮喘表型

阅读:4
作者:Hoang Kim Tu Trinh, Thuy Van Thao Nguyen, Seo-Hee Kim, Thi Bich Tra Cao, Quoc Quang Luu, Seung-Hyun Kim, Hae-Sim Park

Abstract

Patients with late-onset asthma (LOA) have poor clinical outcomes. Osteopontin (OPN) is associated with airway inflammation and remodeling. To investigate the role of OPN in LOA compared to early-onset asthma (EOA), serum OPN levels were compared between 131 adult asthma patients (48 LOA and 83 EOA patients) and 226 healthy controls (HCs). BALB/c mice were sensitized with ovalbumin with/without polyinosinic-polycytidylic acid (poly(I:C)) from week 6 (A6 mice) or week 12 (A12 mice) after birth. Airway hyperresponsiveness (AHR), bronchoalveolar lavage fluid (BALF), cell counts, histology, and Spp1 expression were assessed. The levels of OPN, transforming growth factor β1 (TGF-β1), chitinase 3-like 1 (CH3L1), and interleukin (IL) 5 were measured by ELISA. The expression of Smad3 phosphorylation and tissue transglutaminase 2 (TGM2) was evaluated by Western blot. The serum OPN levels were significantly higher in asthma patients than in HCs and in LOA patients than in those with EOA (P < 0.05) and were positively correlated with serum TGF-β1 and CH3L1 (r = 0.174, r = 0.264; P < 0.05). A12 mice showed elevated AHR with increased levels of OPN/TGF-β1/IL-5 in BALF and Spp1 compared to A6 mice. Poly(I:C) induced remarkable TGF-β1, CH3L1, Th2 cytokine, and OPN levels in BALF and the expression of phosphorylated Smad3, TGM2, and Spp1 in the lungs. OPN triggered TGF-β1/Smad3 signaling in the lungs, which was suppressed by dexamethasone and anti-IL5 antibody. In conclusion, aging and exposure to viral infections may induce OPN release and consequently modulate inflammation and TGF-β1/Smad3-related remodeling, contributing to the development of LOA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。