Histone Modulation Blocks Treg-Induced Foxp3 Binding to the IL-2 Promoter of Virus-Specific CD8⁺ T Cells from Feline Immunodeficiency Virus-Infected Cats

组蛋白调节阻断 Treg 诱导的 Foxp3 与猫免疫缺陷病毒感染猫的病毒特异性 CD8⁺ T 细胞的 IL-2 启动子结合

阅读:5
作者:Mukta Nag, Yan Wang, Kristina De Paris, Jonathan E Fogle

Abstract

CD8⁺ T cells are critical for controlling HIV infection. During the chronic phase of lentiviral infection, CD8⁺ T cells lose their proliferative capacity and exhibit impaired antiviral function. This loss of CD8⁺ T cell function is due, in part, to CD4⁺CD25⁺ T regulatory (Treg) cell-mediated suppression. Our research group has demonstrated that lentivirus-activated CD4⁺CD25⁺ Treg cells induce the repressive transcription factor forkhead box P3 (Foxp3) in autologous CD8⁺ T cells following co-culture. We have recently reported that Treg-induced Foxp3 binds the interleukin-2 (IL-2), interferon-γ (IFN- γ), and tumor necrosis factor-α (TNF-α) promoters in virus-specific CD8⁺ T cells. These data suggest an important role of Foxp3-mediated CD8⁺ T cell dysfunction in lentiviral infection. To elucidate the mechanism of this suppression, we previously reported that decreased methylation facilitates Foxp3 binding in mitogen-activated CD8⁺ T cells from feline immunodeficiency virus (FIV)-infected cats. We demonstrated the reduced binding of Foxp3 to the IL-2 promoter by increasing methylation of CD8⁺ T cells. In the studies presented here, we ask if another form of epigenetic modulation might alleviate Foxp3-mediated suppression in CD8⁺ T cells. We hypothesized that decreasing histone acetylation in virus-specific CD8⁺ T cells would decrease Treg-induced Foxp3 binding to the IL-2 promoter. Indeed, using anacardic acid (AA), a known histone acetyl transferase (HAT) inhibitor, we demonstrate a reduction in Foxp3 binding to the IL-2 promoter in virus-specific CD8⁺ T cells co-cultured with autologous Treg cells. These data identify a novel mechanism of Foxp3-mediated CD8⁺ T cell dysfunction during lentiviral infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。