Long noncoding RNA SNHG17 induced by YY1 facilitates the glioma progression through targeting miR-506-3p/CTNNB1 axis to activate Wnt/β-catenin signaling pathway

YY1诱导的长链非编码RNA SNHG17通过靶向miR-506-3p/CTNNB1轴激活Wnt/β-catenin信号通路促进胶质瘤进展

阅读:5
作者:Huixia Li, Tianhao Li, Dehai Huang, Peng Zhang

Background

Glioma is one of the most widely diagnosed malignancies worldwide. It has been reported that long noncoding RNAs (lncRNAs) are participators in the tumorgenesis of cancers. Nevertheless, the role and function of lncRNA SNHG17 among glioma is unclear.

Conclusions

The findings that YY1-induced SNHG17 facilitated the glioma progression through targeting miR-506-3p/CTNNB1 axis to activate Wnt/β-catenin signaling pathway offered a brand-new prospects to molecular-targeted treatment for glioma.

Methods

RT-qPCR revealed SNHG17, YY1, miR-506-3p, CTNNB1 expression among glioma cells. CCK-8, colony formation, EdU, flow cytometry, TUNEL and western blot assays revealed the function of SNHG17 in glioma. RIP uncovered SNHG17, miR-506-3p and CTNNB1 enrichment in RISC complex. Luciferase reporter assays and RNA pull down revealed interaction of miR-506-3p with SNHG17 and CTNNB1.

Results

SNHG17 expression was up-regulated in glioma tissues and cells. SNHG17 silence attenuated cell proliferation and promoted apoptosis and repressed tumor growth. Moreover, SNHG17 was up-regulated by transcription factor YY1. Mechanistically, SNHG17 activated Wnt/β-catenin signaling pathway in glioma. CTNNB1 was referred to as the mRNA of β-catenin, we validated that SNHG17 bound to miR-506-3p to induce CTNNB1 and activate Wnt/β-catenin signaling pathway. Rescue experiments indicated that CTNNB1 overexpression abolished the inhibitory effects of SNHG7 inhibition on glioma progression. Conclusions: The findings that YY1-induced SNHG17 facilitated the glioma progression through targeting miR-506-3p/CTNNB1 axis to activate Wnt/β-catenin signaling pathway offered a brand-new prospects to molecular-targeted treatment for glioma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。