Ethanol Inhibits Aflatoxin B1 Biosynthesis in Aspergillus flavus by Up-Regulating Oxidative Stress-Related Genes

乙醇通过上调氧化应激相关基因抑制黄曲霉中黄曲霉毒素 B1 的生物合成

阅读:4
作者:Yaoyao Ren, Jing Jin, Mumin Zheng, Qingli Yang, Fuguo Xing

Abstract

As the most carcinogenic, toxic, and economically costly mycotoxins, aflatoxin B1 (AFB1) is primarily biosynthesized by Aspergillus flavus and Aspergillus parasiticus. Aflatoxin biosynthesis is related to oxidative stress and functions as a second line of defense from excessive reactive oxygen species. Here, we find that ethanol can inhibit fungal growth and AFB1 production by A. flavus in a dose-dependent manner. Then, the ethanol's molecular mechanism of action on AFB1 biosynthesis was revealed using a comparative transcriptomic analysis. RNA-Seq data indicated that all the genes except for aflC in the aflatoxin gene cluster were down-regulated by 3.5% ethanol. The drastic repression of aflatoxin structural genes including the complete inhibition of aflK and aflLa may be correlated with the down-regulation of the transcription regulator genes aflR and aflS in the cluster. This may be due to the repression of several global regulator genes and the subsequent overexpression of some oxidative stress-related genes. The suppression of several key aflatoxin genes including aflR, aflD, aflM, and aflP may also be associated with the decreased expression of the global regulator gene veA. In particular, ethanol exposure caused the decreased expression of stress response transcription factor srrA and the overexpression of bZIP transcription factor ap-1, C2H2 transcription factors msnA and mtfA, together with the enhanced levels of anti-oxidant enzymatic genes including Cat, Cat1, Cat2, CatA, and Cu, Zn superoxide dismutase gene sod1. Taken together, these RNA-Seq data strongly suggest that ethanol inhibits AFB1 biosynthesis by A. flavus via enhancing fungal oxidative stress response. In conclusion, this study served to reveal the anti-aflatoxigenic mechanisms of ethanol in A. flavus and to provide solid evidence for its use in controlling AFB1 contamination.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。