Placental Glucose Uptake in a Nonhuman Primate Model of Western-Style Diet Consumption and Chronic Hyperandrogenemia Exposure

西式饮食消费和慢性高雄激素血症暴露的非人类灵长类动物模型中的胎盘葡萄糖摄取情况

阅读:5
作者:Victoria H J Roberts, Aaron D Streblow, Jessica E Gaffney, Samantha P Rettke, Antonio E Frias, Ov D Slayden

Abstract

We reported that consumption of a western-style diet (WSD) with and without hyperandrogenemia perturbed placental perfusion and altered levels of glucose transporter proteins in rhesus macaques. Based on that result, we hypothesized that placental glucose uptake would be dysregulated in this model. In this study, female rhesus macaques were assigned at puberty to one of four groups: subcutaneous cholesterol implants + standard chow diet (controls, C); testosterone implants + chow (T); cholesterol implants + a high-fat, WSD; and T+WSD. After ~6 years of treatment, animals were mated, and pregnancies were delivered by cesarean section at gestational day (G) 130 (the term is G168). Placental villous explants were immediately prepared for radiolabeled glucose assay. Linear glucose uptake was observed between 0 and 30 s. At 20 s, glucose uptake in placental villous explants did not differ across the four treatment groups with values as follows: C: 25.5 ± 6.33, T: 22.9 ± 0.404, WSD: 26.9.0 ± 3.71, and T+WSD: 33.0 ± 3.12 (mean ± SD expressed in pmol/mg). Unlike our prior experiment, glucose transporter expression was reduced in WSD placentas, and our in vitro functional assay did not demonstrate a difference in glucose uptake across the transporting epithelium of the placenta. Notably, maternal blood glucose levels were significantly elevated in animals chronically fed a WSD. This disparity may indicate differences in glucose utilization and metabolism by the placenta itself, as glucose transporter expression and circulating fetal glucose concentrations were comparable across all four groups in this pregnancy cohort.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。