Carboxypeptidase E conditional knockout mice exhibit learning and memory deficits and neurodegeneration

羧肽酶 E 条件性敲除小鼠表现出学习和记忆障碍以及神经退行性病变

阅读:8
作者:Fang-Cheng Fan, Yang Du, Wen-Hui Zheng, Y Peng Loh, Yong Cheng

Abstract

Carboxypeptidase E (CPE) is a multifunctional protein with many nonenzymatic functions in various systems. Previous studies using CPE knock-out mice have shown that CPE has neuroprotective effects against stress and is involved in learning and memory. However, the functions of CPE in neurons are still largely unknown. Here we used a Camk2a-Cre system to conditionally knockout CPE in neurons. The wild-type, CPEflox/-, and CPEflox/flox mice were weaned, ear-tagged, and tail clipped for genotyping at 3 weeks old, and they underwent open field, object recognition, Y-maze, and fear conditioning tests at 8 weeks old. The CPEflox/flox mice had normal body weight and glucose metabolism. The behavioral tests showed that CPEflox/flox mice had impaired learning and memory compared with wild-type and CPEflox/- mice. Surprisingly, the subiculum (Sub) region of CPEflox/flox mice was completely degenerated, unlike the CPE full knockout mice, which exhibit CA3 region neurodegeneration. In addition, doublecortin immunostaining suggested that neurogenesis in the dentate gyrus of the hippocampus was significantly reduced in CPEflox/flox mice. Interestingly, TrkB phosphorylation in the hippocampus was downregulated in CPEflox/flox mice, but brain-derived neurotrophic factor levels were not. In both the hippocampus and dorsal medial prefrontal cortex, we observed reduced MAP2 and GFAP expression in CPEflox/flox mice. Taken together, the results of this study demonstrate that specific neuronal CPE knockout leads to central nervous system dysfunction in mice, including learning and memory deficits, hippocampal Sub degeneration and impaired neurogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。