S100A1 transgenic treatment of acute heart failure causes proteomic changes in rats

S100A1转基因治疗急性心力衰竭引起大鼠蛋白质组学变化

阅读:7
作者:Yichen Guo, Lianqun Cui, Shiliang Jiang, Dongmei Wang, Shu Jiang, Chen Xie, Yanping Jia

Abstract

S100 Ca2+-binding protein A1 (S100A1) is an important regulator of myocardial contractility. The aim of the present study was to identify the underlying mechanisms of S100A1 activity via profiling the protein expression in rats administered with an S100A1 adenovirus (Ad‑S100A1‑EGFP) following acute myocardial infarction (AMI). LTQ OrbiTrap mass spectrometry was used to profile the protein expression in the Ad‑S100A1‑EGFP and control groups post‑AMI. Using Protein Analysis Through Evolutionary Relationships (PANTHER) analysis, 134 energy metabolism‑associated proteins, which comprised 20 carbohydrate metabolism‑associated and 27 lipid metabolism associated proteins, were identified as differentially expressed in the Ad‑S100A1‑EGFP hearts compared with controls. The majority of the differentially expressed proteins identified were important enzymes involved in energy metabolism. The present study identified 12 Ca2+‑binding proteins and 22 cytoskeletal proteins. The majority of the proteins expressed in the Ad‑S100A1‑EGFP group were upregulated compared with the control group. These results were further validated using western blot analysis. Following AMI, Ca2+ is crucial for the recovery of myocardial function in S100A1 transgenic rats as indicated by the upregulation of proteins associated with energy metabolism and Ca2+‑binding. Thus, the current study ascertained that energy production and contractile ability were enhanced after AMI in the ventricular myocardium of the Ad‑S100A1‑EGFP group.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。