Polydatin Improves Glucose and Lipid Metabolisms in Insulin-Resistant HepG2 Cells through the AMPK Pathway

白藜芦醇苷通过AMPK通路改善胰岛素抵抗HepG2细胞的葡萄糖和脂质代谢

阅读:5
作者:Jie Hao, Kaipeng Huang, Cheng Chen, Yan Liang, Yu Wang, Xiaojian Zhang, Heqing Huang

Abstract

Previous investigations on diabetic rats and palmitic corrosive instigated insulin-resistant HepG2 cells have shown that polydatin exhibits hypoglycemic and hypolipidemic impacts. The AMP-activated protein kinase (AMPK) pathway assumes a crucial part in glucose and lipid digestion. We aimed to investigate the regulatory system of polydatin on the glucose and lipid metabolism through the AMPK pathway. Glucose take-up, utilization levels, and oil red O recoloring were distinguished to confirm their impact on improving insulin resistance. A Western blot examination was utilized to investigate the phosphorylation levels of protein kinase B (Akt), glycogen synthase kinase (GSK)-3β, AMPK, acetyl-CoA carboxylase (ACC), and in addition the protein levels of the low-density lipoprotein receptor (LDLR) and sterol regulatory element-binding protein (SREBP)-1c. SREBP-1c nuclear translocation levels were recognized by a laser checking confocal magnifying instrument. One hundred nanomolar insulin treated for 24 h significantly declined the phosphorylation of Akt and AMPK, and increased the nucleoproteins of SREBP-1c compared with HepG2 cells without insulin. The insulin-resistant HepG2 cells prompted by insulin mediated the impact of polydatin on glucose and lipid digestion. Polydatin decreased glucose and lipid digestion of insulin-resistant HepG2 cells. Moreover, polydatin markedly raised phosphorylated Akt, GSK-3β, AMPK, ACC, diminished nuclear protein levels of SREBP-1c, and upgraded the protein levels of LDLR. Regulation of the AMPK pathway and changes in LDLR protein expression are potential focuses of polydatin in the treatment of insulin protection in insulin-resistant HepG2 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。