Attenuation of reserpine-induced fibromyalgia via ROS and serotonergic pathway modulation by fisetin, a plant flavonoid polyphenol

通过 ROS 和非瑟酮(一种植物黄酮类多酚)调节血清素通路减轻利血平诱发的纤维肌痛

阅读:5
作者:Xianli Yao, Li Li, Amit D Kandhare, Anwesha A Mukherjee-Kandhare, Subhash L Bodhankar

Abstract

Fibromyalgia (FM) is a chronic complex musculoskeletal disorder characterized by widespread musculoskeletal pain accompanied by fatigue, sleep disturbance, memory defects and mood changes. Fisetin, a plant flavonoid polyphenol, has been reported to possess potent antioxidant, antinociceptive and neuroprotective activities. The present study aimed to evaluate the efficacy of fisetin against reserpine-induced FM (RIF) in rats. RIF was induced in male Wistar rats (180-220 gm) using reserpine (1 mg/kg; subcutaneous; once daily for 3 consecutive days) and the rats were treated with fisetin (5, 10 and 25 mg/kg) for 21 days. Various behavioral, biochemical and molecular parameters were evaluated. Administration of reserpine induced allodynia, hyperalgesia and depression, which were significantly ameliorated (P<0.05) by fisetin (10 and 25 mg/kg), as reflected by an increase in paw and tail withdrawal latency, increased paw withdrawal threshold, and decreased immobility time. Reserpine led to decreased biogenic amine levels [5-hydroxytryptamine (5-HT), noradrenaline (NA) and dopamine (DA)] and increased the ratio to their metabolite 3,4-dihydroxyphenylacetic acid. 5-hydroxyindoleacetic acid in the spinal cord, thalamus and prefrontal cortex was significantly decreased (P<0.05) by fisetin. Immunohistological analysis of brain tissue revealed that fisetin significantly inhibited (P<0.05) reserpine-induced depletion of 5-HT. It also significantly inhibited (P<0.05) elevated oxido-nitrosative stress and reactive oxygen species (ROS) levels, as analyzed by flow cytometry in RIF rats. Fisetin exerts its antinociceptive and anti-depressive potential via modulation of decreased levels of biogenic amines (5-HT, NA and DA), elevated oxido-nitrosative stress and ROS to ameliorate allodynia, hyperalgesia, and depression in experimental RIF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。