α- Tocopherol succinate loaded nano-structed lipid carriers improves antitumor activity of doxorubicin in breast cancer models in vivo

载有 α-生育酚琥珀酸酯的纳米结构脂质载体可提高乳腺癌模型中阿霉素的体内抗肿瘤活性

阅读:4
作者:Renata S Fernandes, Juliana O Silva, Heloísa A Seabra, Mariana S Oliveira, Virgínia M Carregal, José M C Vilela, Margareth S Andrade, Danyelle M Townsend, Patrick M Colletti, Elaine A Leite, Valbert N Cardoso, Lucas A M Ferreira, Domenico Rubello, André L B Barros

Abstract

Combination-based chemotherapies have been the standard treatment for multiple solid tumors since the 1960s. Combined therapies where both agents have toxicity results in dose-limiting effects. α- tocopherol succinate (TS) is an analogue of vitamin E that exhibits antitumor properties in the absence of toxicity. Hence, its combination with a frontline chemotherapy, doxorubicin (DOX) is an alternative to increase antitumor efficacy. Therefore, the aim of this work was to evaluate the antitumor activity of nanostructed lipid carriers (NLC) loaded with TS and DOX. The NLC-TS-DOX were prepared, characterized and radiolabeled with technetium-99m. Cytotoxicity studies were performed in vitro, using two breast cancer cell lines, MDA-MB-231 and 4T1. Biodistribution and antitumor activity were evaluated in 4T1 tumor-bearing mice. The results showed that NLC-TS-DOX had a small diameter (85 nm) and a long blood clearance (T1/2β = 1107.71 min) that consequently resulted in a higher tumor uptake compared to contralateral muscle for up to 48 h. Drug combination studies in MDA-MB-231 and 4T1 cells showed a combination index below 0.8 at ED50-90 for both cell lines. Interestingly, a high synergism was found at ED90. Antitumor activity showed a better control of tumor growth for animals treated with NLC-ST-DOX. The small particle size, along with the EPR effect and the controlled release of DOX from the particle, associated with the synergic combination between TS and DOX led to an increase of the antitumor efficacy. Therefore, NLC-TS-DOX can be considered a plausible alternative to improve antitumor efficacy in DOX therapeutic regimens.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。