EEF1A2 accelerates the protein translation of chemokine in rat myocardial cells induced by ischemia-reperfusion

EEF1A2 加速缺血再灌注大鼠心肌细胞趋化因子的蛋白质翻译

阅读:6
作者:Zi-Jie Zhang, Zhi-Xiang Sun, Hai-Jian Liu

Abstract

How to reduce the damage caused by myocardial ischemia-reperfusion (IR) in a timely manner to save patients' lives is still a great clinical challenge. Although dexmedetomidine (DEX) has been reported to protect the myocardium, the regulatory mechanism of gene translation responding to IR injury and DEX protection is poorly understood. In this study, IR rat model with DEX and the antagonist yohimbine (YOH) pretreatment were established, and RNA sequencing was carried out to seek the important regulators in differential expressed genes. A series of cytokines and chemokine as well as eukaryotic translation elongation factor 1 alpha 2 (EEF1A2) were induced by IR compared to control and compromised by DEX pretreatment compared to IR, then reversed by YOH. Immunoprecipitation was conducted to identify that peroxiredoxin 1 (PRDX1) interacted with EEF1A2 and contributed to the recruitment of EEF1A2 on mRNA molecules of cytokines and chemokine. Knockdown of PRDX1 could weaken the enhancive effect of EEF1A2 for gene translation of IL6, CXCL2 and CXCL11 under the IR condition, and indeed reduce cell apoptosis of cardiomyocytes. We also determined that the RNA motif "USCAGDCU" at 5' UTR could be particularly recognized by PRDX1. Destruction of this motif at the 5' UTR of IL6, CXCL2 and CXCL11 by CRISPR-CAS9 could result in the loss occupancies of EEF1A2 and PRDX1 on the mRNA of these three genes. Our observations showed the importance of PRDX1 in the reasonable control of cytokine and chemokine expression to prevent excessive inflammatory response to cell damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。