EVs-miR-17-5p attenuates the osteogenic differentiation of vascular smooth muscle cells potentially via inhibition of TGF-β signaling under high glucose conditions

EVs-miR-17-5p 可能通过抑制高糖条件下的 TGF-β 信号传导来减弱血管平滑肌细胞的成骨分化

阅读:5
作者:Isashi Baba, Tetsuya Matoba, Shunsuke Katsuki, Jun-Ichiro Koga, Takuro Kawahara, Mitsukuni Kimura, Hidetaka Akita, Hiroyuki Tsutsui

Abstract

Vascular calcification, which is a major complication of diabetes mellitus, is an independent risk factor for cardiovascular disease. Osteogenic differentiation of vascular smooth muscle cells (VSMCs) is one of the key mechanisms underlying vascular calcification. Emerging evidence suggests that macrophage-derived extracellular vesicles (EVs) may be involved in calcification within atherosclerotic plaques in patients with diabetes mellitus. However, the role of macrophage-derived EVs in the progression of vascular calcification is largely unknown. In this study, we investigated whether macrophage-derived EVs contribute to the osteogenic differentiation of VSMCs under high glucose conditions. We isolated EVs that were secreted by murine peritoneal macrophages under normal glucose (EVs-NG) or high glucose (EVs-HG) conditions. miRNA array analysis in EVs from murine macrophages showed that miR-17-5p was significantly increased in EVs-HG compared with EVs-NG. Prediction analysis with miRbase identified transforming growth factor β receptor type II (TGF-β RII) as a potential target of miR-17-5p. EVs-HG as well as miR-17-5p overexpression with lipid nanoparticles inhibited the gene expression of Runx2, and TGF-β RII. Furthermore, we demonstrated that VSMCs transfected with miR-17-5p mimic inhibited calcium deposition. Our findings reveal a novel role of macrophage-derived EVs in the negative regulation of osteogenic differentiation in VSMCs under high glucose conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。