LIFU-responsive nanomedicine enables acoustic droplet vaporization-induced apoptosis of macrophages for stabilizing vulnerable atherosclerotic plaques

响应 LIFU 的纳米药物能够通过声滴蒸发诱导巨噬细胞凋亡,从而稳定脆弱的动脉粥样硬化斑块

阅读:9
作者:Jingxin Hou, Jun Zhou, Meiqi Chang, Guangcheng Bao, Jie Xu, Man Ye, Yixin Zhong, Shuling Liu, Junrui Wang, Wei Zhang, Haitao Ran, Zhigang Wang, Yu Chen, Dajing Guo

Abstract

Due to the high risk of tearing and rupture, vulnerable atherosclerotic plaques would induce serious cardiovascular and cerebrovascular diseases. Despite the available clinical methods can evaluate the vulnerability of plaques and specifically treat vulnerable plaques before a cardiovascular event, but the efficiency is still low and undesirable. Herein, we rationally design and engineer the low-intensity focused ultrasound (LIFU)-responsive FPD@CD nanomedicine for the highly efficient treatment of vulnerable plaques by facilely loading phase transition agent perfluorohexane (PFH) into biocompatible PLGA-PEG-PLGA nanoparticles (PPP NPs) and then attaching dextran sulphate (DS) onto the surface of PPP NPs for targeting delivery. DS, as a typical macrophages-targeted molecule, can achieve the precise vaporization of NPs and subsequently controllable apoptosis of RAW 264.7 macrophages as induced by acoustic droplet vaporization (ADV) effect. In addition, the introduction of DiR and Fe3O4 endows nanomedicine with near-infrared fluorescence (NIRF) and magnetic resonance (MR) imaging capabilities. The engineered FPD@CD nanomedicine that uses macrophages as therapeutic targets achieve the conspicuous therapeutic effect of shrinking vulnerable plaques based on in vivo and in vitro evaluation outcomes. A reduction of 49.4% of vascular stenosis degree in gross pathology specimens were achieved throughout the treatment period. This specific, efficient and biosafe treatment modality potentiates the biomedical application in patients with cardiovascular and cerebrovascular diseases based on the relief of the plaque rupture concerns.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。