High sodium reduced the expression of PTH1R and Klotho by inhibiting 1,25(OH)2D3 synthesis in cultured proximal tubule epithelial cells

高钠通过抑制培养的近端小管上皮细胞中的 1,25(OH)2D3 合成来降低 PTH1R 和 Klotho 的表达

阅读:4
作者:Jie Gu #, Jialin Shi #, Xujiao Chen, Jianping Mao, Huaizhou You, Jing Chen

Background

The proximal tubule is the sensing site of sodium and phosphate and the main place for the synthesis and metabolism of 1,25(OH)2D3. We aimed to investigate the effects of high sodium on the synthesis and function of active vitamin D and local phosphate regulation in proximal tubular epithelial cells.

Conclusions

High sodium can decrease the synthesis of active vitamin D in the proximal tubules, affect the gene regulation of 1,25(OH)2D3/VDR, and significantly reduce the expression of PTH1R and Klotho. It revealed the influence of a high-sodium diet on mineral metabolism and the core role of vitamin D in kidney mineral metabolism.

Methods

Human proximal tubule epithelial (HK-2) cells were treated with different concentrations of sodium/phosphate. The expression of 1α-OHase and 24-OHase was determined. Liquid chromatography/mass spectrometry (LC/MS) and enzyme-linked immunosorbent assay (ELISA) were used to detect the levels of 1,25(OH)2D3. RNA sequencing and bioinformatics analysis was used to probe into the possible pathways. Chromatin samples were immunoprecipitated with antibodies against parathyroid receptor 1 (PTH1R) and Klotho.

Results

We found that high sodium decreased the expression of 1,25(OH)2D3 by reducing 1α-OHase and 24-OHase, reduced the expression of PTH1R and Klotho, and increased the intracellular calcium concentration. These effects were reversed by sodium phosphate transporter inhibitor, sodium hydrogen transporter inhibitor, and a chelator of the extracellular calcium, whereas enhanced by ouabain. Vitamin D receptor (VDR) agonists significantly increased the recruitment of VDR to the vitamin D response element (VDRE) of PTH1R and Klotho promoter, thus increasing the expression of PTH1R and Klotho. Conclusions: High sodium can decrease the synthesis of active vitamin D in the proximal tubules, affect the gene regulation of 1,25(OH)2D3/VDR, and significantly reduce the expression of PTH1R and Klotho. It revealed the influence of a high-sodium diet on mineral metabolism and the core role of vitamin D in kidney mineral metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。