Glutaminyl cyclase inhibitor contributes to the regulation of HSP70, HSP90, actin, and ribosome on gene and protein levels in vitro

谷氨酰胺环化酶抑制剂有助于体外在基因和蛋白质水平上调节 HSP70、HSP90、肌动蛋白和核糖体

阅读:5
作者:Xi Yu, Yue Li, Yongdong Zou, Yizhi Zheng, Zhendan He, Zhigang Liu, Wenlin Xie, Haiqiang Wu

Abstract

Because of the crucial roles of upregulated glutaminyl cyclase (QC) in the initiation and development of Alzheimer's disease (AD), QC inhibitors are supposed as disease-modifying agents for the treatment of AD. And reported compounds encourage this hypothesis greatly based on the remarkable anti-AD effects in vivo. To illustrate the mechanism in detail, the actions of a selected QC inhibitor (23) were assessed firstly in a cell system here. It was demonstrated that QC activities and the generation of pyroglutamate-modified β-amyloids in PC12 cells were both inhibited obviously after the treatment of 23. A total of 13 and 15 genes were up- and downregulated significantly in treated cells by RNA-sequencing analysis. Quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, WB, and immunofluorescence analysis supported the effects of 23 on the transcriptome of PC12 cells consequently. The expressions of chaperones, heat shock proteins (HSP) 70, and 90, were upreglutated, while gene expression of actin and the level of encoded protein were reduced significantly in PC12 cells with the treatment. Furthermore, the regulations of ribosome were observed after the treatment. These results indicate the potency of 23 to improve the translation, expression and folding regulation of proteins and affect the multivalent cross-linking of cytoskeletal protein and other proteins subsequently in the cell system and might contribute to the understanding of the mechanism of QC inhibitor as potential anti-AD agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。