Cholesterol derivatives induce dephosphorylation of the histone deacetylases Rpd3/HDAC1 to upregulate autophagy

胆固醇衍生物诱导组蛋白去乙酰化酶 Rpd3/HDAC1 去磷酸化从而上调自噬

阅读:10
作者:Wenmei Wu, Man Luo, Kang Li, Yichen Dai, Huiyu Yi, Yangjin Zhong, Yang Cao, Gianluca Tettamanti, Ling Tian

Abstract

Histone deacetylases (HDACs) are important for global gene expression and contribute to numerous physiological events. Deacetylase Rpd3 in yeast and its conserved homolog HDAC1 in mammals oppositely regulate autophagy; however, how Rpd3/HDAC1 is regulated to mediate autophagy remains unclear. Here, we showed autophagy occurrence in silkworm (Bombyx mori) required BmRpd3, wherein steroid hormone 20-hydroxyecdysone (20E) signaling regulated its protein level and nuclear localization negatively. Inhibition of MTOR led to dephosphorylation and nucleo-cytoplasmic translocation of BmRpd3/HsHDAC1. Besides, cholesterol, 20E, and 27-hydroxycholesterol could all induce massive dephosphorylation and cytoplasmic localization of BmRpd3/HsHDAC1, and thus autophagy by affecting MTORC1 activity. In addition, three phosphorylation sites (Ser392, Ser421, and Ser423) identified in BmRpd3 were conserved in HsHDAC1. Single or triple phosphorylation-site mutation attenuated the phosphorylation levels of BmRpd3/HsHDAC1, leading to their cytoplasmic localization and autophagy activation. In general, cholesterol derivatives, especially hydroxylated cholesterol, caused dephosphorylation and nucleo-cytoplasmic shuttling of BmRpd3/HsHDAC1 through inhibition of MTOR signaling to facilitate autophagy in B. mori and mammals. These findings improve our understandings of BmRpd3/HsHDAC1-mediated autophagy induced by cholesterol derivatives and shed light on their potential as a therapeutic target for neurodegenerative diseases and autophagy-related studies.Abbreviations: 20E: 20-hydroxyecdysone; 27-OH: 27-hydroxycholesterol; ACTB: actin beta; AMPK: AMP-activated protein kinase; Atg: autophagy-related; BmSqstm1: Bombyx sequestosome 1; CQ: chloroquine; HDAC: histone deacetylase; LMNB: Lamin B1; MTOR: mechanistic target of rapamycin kinase; PE: phosphatidylethanolamine; SQSTM1/p62: sequestosome 1; TUBA1A: tubulin alpha 1a.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。