Mouse Model of Weak Depression Exhibiting Suppressed cAMP Signaling in the Amygdala, Lower Lipid Catabolism in Liver, and Correlated Gut Microbiota

轻度抑郁小鼠模型表现出杏仁核中 cAMP 信号传导受到抑制、肝脏中脂质分解代谢降低以及相关肠道微生物群

阅读:7
作者:Kousuke Shimada, Masakatsu Nohara, Akihito Yasuoka, Asuka Kamei, Fumika Shinozaki, Kaori Kondo, Ryo Inoue, Takashi Kondo, Keiko Abe

Abstract

To establish a mouse model of weak depression, we raised 6-week-old C57BL/6N mice in single (SH) or group housing (GH) conditions for 2 weeks. The SH group showed less social interaction with stranger mice, learning disability in behavioral tests, and lower plasma corticosterone levels. The cecal microbiota of the SH group showed significant segregation from the GH group in the principal coordinate analysis (PCoA). Transcriptome analysis of the amygdala and liver detected multiple differentially expressed genes (DEGs). In the amygdala of SH mice, suppression of the cyclic adenine monophosphate (cAMP) signal was predicted and confirmed by the reduced immunoreactivity of phosphorylated cAMP-responsive element-binding protein. In the liver of SH mice, downregulation of beta-oxidation was predicted. Interestingly, the expression levels of over 100 DEGs showed a significant correlation with the occupancy of two bacterial genera, Lactobacillus (Lactobacillaceae) and Anaerostipes (Lachnospiraceae). These bacteria-correlated DEGs included JunB, the downstream component of cAMP signaling in the amygdala, and carnitine palmitoyltransferase 1A (Cpt1a), a key enzyme of beta-oxidation in the liver. This trans-omical analysis also suggested that nicotinamide adenine dinucleotide (NAD) synthesis in the liver may be linked to the occupancy of Lactobacillus through the regulation of nicotinamide phosphoribosyltransferase (NAMPT) and kynureninase (KYNU) genes. Our results suggested that SH condition along with the presence of correlated bacteria species causes weak depression phenotype in young mice and provides a suitable model to study food ingredient that is able to cure weak depression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。