Synthesis, Characterization, and Comparative Theoretical Investigation of Dinitrogen-Bridged Group 6-Gold Heterobimetallic Complexes

双氮桥联第 6 族金异双金属配合物的合成、表征及比较理论研究

阅读:10
作者:David Specklin, Anaïs Coffinet, Laure Vendier, Iker Del Rosal, Chiara Dinoi, Antoine Simonneau

Abstract

We have prepared and characterized a series of unprecedented group 6-group 11, N2-bridged, heterobimetallic [ML4(η1-N2)(μ-η1:η1-N2)Au(NHC)]+ complexes (M = Mo, W, L2 = diphosphine) by treatment of trans-[ML4(N2)2] with a cationic gold(I) complex [Au(NHC)]+. The adducts are very labile in solution and in the solid, especially in the case of molybdenum, and decomposition pathways are likely initiated by electron transfers from the zerovalent group 6 atom to gold. Spectroscopic and structural parameters point to the fact that the gold adducts are very similar to Lewis pairs formed out of strong main-group Lewis acids (LA) and low-valent, end-on dinitrogen complexes, with a bent M-N-N-Au motif. To verify how far the analogy goes, we computed the electronic structures of [W(depe)2(η1-N2)(μ-η1:η1-N2)AuNHC]+ (10W+) and [W(depe)2(η1-N2)(μ-η1:η1-N2)B(C6F5)3] (11W). A careful analysis of the frontier orbitals of both compounds shows that a filled orbital resulting from the combination of the π* orbital of the bridging N2 with a d orbital of the group 6 metal overlaps in 10W+ with an empty sd hybrid orbital at gold, whereas in 11W with an sp3 hybrid orbital at boron. The bent N-N-LA arrangement maximizes these interactions, providing a similar level of N2 "push-pull" activation in the two compounds. In the gold case, the HOMO-2 orbital is further delocalized to the empty carbenic p orbital, and an NBO analysis suggests an important electrostatic component in the μ-N2-[Au(NHC)]+ bond.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。