CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat

CREB 磷酸化调节大鼠甲基苯丙胺成瘾自我给药模型中的纹状体转录反应

阅读:5
作者:Irina N Krasnova, Margarit Chiflikyan, Zuzana Justinova, Michael T McCoy, Bruce Ladenheim, Subramaniam Jayanthi, Cynthia Quintero, Christie Brannock, Chanel Barnes, Jordan E Adair, Elin Lehrmann, Firas H Kobeissy, Mark S Gold, Kevin G Becker, Steven R Goldberg, Jean Lud Cadet

Abstract

Neuroplastic changes in the dorsal striatum participate in the transition from casual to habitual drug use and might play a critical role in the development of methamphetamine (METH) addiction. We examined the influence of METH self-administration on gene and protein expression that may form substrates for METH-induced neuronal plasticity in the dorsal striatum. Male Sprague-Dawley rats self-administered METH (0.1mg/kg/injection, i.v.) or received yoked saline infusions during eight 15-h sessions and were euthanized 2h, 24h, or 1month after cessation of METH exposure. Changes in gene and protein expression were assessed using microarray analysis, RT-PCR and Western blots. Chromatin immunoprecipitation (ChIP) followed by PCR was used to examine epigenetic regulation of METH-induced transcription. METH self-administration caused increases in mRNA expression of the transcription factors, c-fos and fosb, the neurotrophic factor, Bdnf, and the synaptic protein, synaptophysin (Syp) in the dorsal striatum. METH also caused changes in ΔFosB, BDNF and TrkB protein levels, with increases after 2 and 24h, but decreases after 1month of drug abstinence. Importantly, ChIP-PCR showed that METH self-administration caused enrichment of phosphorylated CREB (pCREB), but not of histone H3 trimethylated at lysine 4 (H3K4me3), on promoters of c-fos, fosb, Bdnf and Syp at 2h after cessation of drug intake. These findings show that METH-induced changes in gene expression are mediated, in part, by pCREB-dependent epigenetic phenomena. Thus, METH self-administration might trigger epigenetic changes that mediate alterations in expression of genes and proteins serving as substrates for addiction-related synaptic plasticity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。