Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes

具有免疫调节能力的聚多巴胺介导的氧化石墨烯和纳米羟基磷灰石掺入导电支架可加速糖尿病患者的牙周骨再生

阅读:4
作者:Yazhen Li, Lu Yang, Yue Hou, Zhenzhen Zhang, Miao Chen, Maoxia Wang, Jin Liu, Jun Wang, Zhihe Zhao, Chaoming Xie, Xiong Lu

Abstract

Regenerating periodontal bone tissues in the aggravated inflammatory periodontal microenvironment under diabetic conditions is a great challenge. Here, a polydopamine-mediated graphene oxide (PGO) and hydroxyapatite nanoparticle (PHA)-incorporated conductive alginate/gelatin (AG) scaffold is developed to accelerate periodontal bone regeneration by modulating the diabetic inflammatory microenvironment. PHA confers the scaffold with osteoinductivity and PGO provides a conductive pathway for the scaffold. The conductive scaffold promotes bone regeneration by transferring endogenous electrical signals to cells and activating Ca2+ channels. Moreover, the scaffold with polydopamine-mediated nanomaterials has a reactive oxygen species (ROS)-scavenging ability and anti-inflammatory activity. It also exhibits an immunomodulatory ability that suppresses M1 macrophage polarization and activates M2 macrophages to secrete osteogenesis-related cytokines by mediating glycolytic and RhoA/ROCK pathways in macrophages. The scaffold induces excellent bone regeneration in periodontal bone defects of diabetic rats because of the synergistic effects of good conductive, ROS-scavenging, anti-inflammatory, and immunomodulatory abilities. This study provides fundamental insights into the synergistical effects of conductivity, osteoinductivity, and immunomodulatory abilities on bone regeneration and offers a novel strategy to design immunomodulatory biomaterials for treatment of immune-related diseases and tissue regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。