Blocking the P2X7 receptor improves outcomes after axonal fusion

阻断 P2X7 受体可改善轴突融合后的结果

阅读:5
作者:Charles L Rodriguez-Feo, Kevin W Sexton, Richard B Boyer, Alonda C Pollins, Nancy L Cardwell, Lillian B Nanney, R Bruce Shack, Michelle A Mikesh, Christopher H McGill, Christopher W Driscoll, George D Bittner, Wesley P Thayer

Background

Activation of the P2X7 receptor on peripheral neurons causes the formation of pannexin pores, which allows the influx of calcium across the cell membrane. Polyethylene glycol (PEG) and methylene blue have previously been shown to delay Wallerian degeneration if applied during microsuture repair of the severed nerve. Our hypothesis is that by modulating calcium influx via the P2X7 receptor pathway, we could improve PEG-based axonal repair. The P2X7 receptor can be stimulated or inhibited using bz adenosine triphosphate (bzATP) or brilliant blue (FCF), respectively.

Conclusions

Blocking the P2X7 receptor improves functional outcomes after PEG-mediated axonal fusion.

Methods

A single incision rat sciatic nerve injury model was used. The defect was repaired using a previously described PEG methylene blue fusion protocol. Experimental animals were treated with 100 μL of 100 μM FCF solution (n = 8) or 100 μL of a 30 μM bzATP solution (n = 6). Control animals received no FCF, bzATP, or PEG. Compound action potentials were recorded prior to transection (baseline), immediately after repair, and 21 d postoperatively. Animals underwent behavioral testing 3, 7, 14, and 21 d postoperatively. After sacrifice, nerves were fixed, sectioned, and immunostained to allow for counting of total axons.

Results

Rats treated with FCF showed an improvement compared with control at all time points (n = 8) (P = 0.047, 0.044, 0.014, and 0.0059, respectively). A statistical difference was also shown between FCF and bzATP at d 7 (P < 0.05), but not shown with d 3, 14, and 21 (P > 0.05). Conclusions: Blocking the P2X7 receptor improves functional outcomes after PEG-mediated axonal fusion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。