Gestational Exercise Increases Male Offspring's Maximal Workload Capacity Early in Life

妊娠期锻炼可提高男性后代早期的最大工作能力

阅读:6
作者:Jorge Beleza, Jelena Stevanović-Silva, Pedro Coxito, Hugo Rocha, Paulo Santos, António Ascensão, Joan Ramon Torrella, José Magalhães

Abstract

Mothers' antenatal strategies to improve the intrauterine environment can positively decrease pregnancy-derived intercurrences. By challenging the mother-fetus unit, gestational exercise (GE) favorably modulates deleterious stimuli, such as high-fat, high-sucrose (HFHS) diet-induced adverse consequences for offspring. We aimed to analyze whether GE alters maternal HFHS-consumption effects on male offspring's maximal workload performance (MWP) and in some skeletal muscle (the soleus-SOL and the tibialis anterior-TA) biomarkers associated with mitochondrial biogenesis and oxidative fitness. Infant male Sprague-Dawley rats were divided into experimental groups according to mothers' dietary and/or exercise conditions: offspring of sedentary control diet-fed or HFHS-fed mothers (C-S or HFHS-S, respectively) and of exercised HFHS-fed mothers (HFHS-E). Although maternal HFHS did not significantly alter MWP, offspring from GE dams exhibited increased MWP. Lower SOL AMPk levels in HFHS-S were reverted by GE. SOL PGC-1α, OXPHOS C-I and C-IV subunits remained unaltered by maternal diet, although increased in HFHS-E offspring. Additionally, GE prevented maternal diet-related SOL miR-378a overexpression, while upregulated miR-34a expression. Decreased TA C-IV subunit expression in HFHS-S was reverted in HFHS-E, concomitantly with the downregulation of miR-338. In conclusion, GE in HFHS-fed dams increases the offspring's MWP, which seems to be associated with the intrauterine modulation of SM mitochondrial density and functional markers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。