Loss of KLF15 accelerates chronic podocyte injury

KLF15 的缺失会加速慢性足细胞损伤

阅读:5
作者:Seung Seok Han, Mi-Yeon Yu, Kyung Don Yoo, Jung Pyo Lee, Dong Ki Kim, Yon Su Kim, Seung Hee Yang

Abstract

Krüppel‑like factor 15 (KLF15), also known as kidney‑enriched transcription factor, is known to participate in podocyte differentiation. However, the role of KLF15 in chronic podocyte injury remains incompletely understood, particularly in proteinuric disease models. In the present study, the 5/6 nephrectomy mouse model was used to induce chronic podocyte injury. Human primary podocytes were isolated by flow cytometry and cultured to emulate the injury process in an in vitro system. Biopsied kidney tissue samples were obtained from patients with primary membranous nephropathy or diabetic nephropathy in order to analyze the relationship between glomerular KLF15 expression and subsequent outcomes. When 5/6 nephrectomy was predisposed to progressive kidney damage, fibrosis markers increased, while podocyte KLF15 expression decreased. In addition, increased fibrosis marker expression in human primary podocytes following treatment with transforming growth factor‑β was aggravated by the knockdown of KLF15. These trends were reversed after cultured podocytes were treated with cyclosporine. When patients were grouped according to KLF15 expression levels in kidney tissue, the low expression groups were demonstrated to have worse renal outcomes, such as non‑remission of disease and end‑stage renal disease. In conclusion, the present findings revealed that low expression of KLF15 was associated with chronic podocyte injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。