Hepcidin Deficiency Protects Against Atherosclerosis

铁调素缺乏可预防动脉粥样硬化

阅读:5
作者:Rajeev Malhotra, Florian Wunderer, Hanna J Barnes, Aranya Bagchi, Mary D Buswell, Caitlin D O'Rourke, Charles L Slocum, Clara D Ledsky, Kathryn M Peneyra, Haakon Sigurslid, Benjamin Corman, Kimberly B Johansson, David K Rhee, Kenneth D Bloch, Donald B Bloch

Abstract

Objective- Inflammatory stimuli enhance the progression of atherosclerotic disease. Inflammation also increases the expression of hepcidin, a hormonal regulator of iron homeostasis, which decreases intestinal iron absorption, reduces serum iron levels and traps iron within macrophages. The role of macrophage iron in the development of atherosclerosis remains incompletely understood. The objective of this study was to investigate the effects of hepcidin deficiency and decreased macrophage iron on the development of atherosclerosis. Approach and Results- Hepcidin- and LDL (low-density lipoprotein) receptor-deficient ( Hamp-/-/ Ldlr-/-) mice and Hamp+/+/ Ldlr-/- control mice were fed a high-fat diet for 21 weeks. Compared with control mice, Hamp-/-/ Ldlr-/- mice had decreased aortic macrophage activity and atherosclerosis. Because hepcidin deficiency is associated with both increased serum iron and decreased macrophage iron, the possibility that increased serum iron was responsible for decreased atherosclerosis in Hamp-/-/ Ldlr-/- mice was considered. Hamp+/+/ Ldlr-/- mice were treated with iron dextran so as to produce a 2-fold increase in serum iron. Increased serum iron did not decrease atherosclerosis in Hamp+/+/ Ldlr-/- mice. Aortic macrophages from Hamp-/-/ Ldlr-/- mice had less labile free iron and exhibited a reduced proinflammatory (M1) phenotype compared with macrophages from Hamp+/+/ Ldlr-/- mice. THP1 human macrophages treated with an iron chelator were used to model hepcidin deficiency in vitro. Treatment with an iron chelator reduced LPS (lipopolysaccharide)-induced M1 phenotypic expression and decreased uptake of oxidized LDL. Conclusions- In summary, in a hyperlipidemic mouse model, hepcidin deficiency was associated with decreased macrophage iron, a reduced aortic macrophage inflammatory phenotype and protection from atherosclerosis. The results indicate that decreasing hepcidin activity, with the resulting decrease in macrophage iron, may prove to be a novel strategy for the treatment of atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。