Nucleotide-Binding Oligomerization Domain-Like Receptor Protein 3 Deficiency in Vascular Smooth Muscle Cells Prevents Arteriovenous Fistula Failure Despite Chronic Kidney Disease

血管平滑肌细胞中核苷酸结合寡聚化结构域样受体蛋白3的缺乏可预防慢性肾病患者的动静脉瘘衰竭

阅读:2
作者:Xiangchao Ding ,Jiuling Chen ,Chuangyan Wu ,Guohua Wang ,Cheng Zhou ,Shanshan Chen ,Ke Wang ,Anchen Zhang ,Ping Ye ,Jie Wu ,Shanshan Chen ,Hao Zhang ,Kaiying Xu ,Sihua Wang ,Jiahong Xia

Abstract

Background The arteriovenous fistula ( AVF ) is the preferred hemodialysis access for patients with chronic kidney disease. Chronic kidney disease can increase neointima formation, which greatly contributes to AVF failure by an unknown mechanism. Our study aimed to determine the role of nucleotide-binding oligomerization domain-like receptor protein 3 ( NLRP 3) in neointima formation induced by experimental AVF s in the presence of chronic kidney disease. Methods and Results From our findings, NLRP 3 was upregulated in the intimal lesions of AVF s in both uremic mice and patients. Smooth muscle-specific knockout NLRP 3 mice exhibited markedly decreased neointima formation in the outflow vein of AVF s. Compared with primary vascular smooth muscle cells isolated from control mice, those isolated from smooth muscle-specific knockout NLRP 3 mice showed compromised proliferation, migration, phenotypic switching, and a weakened ability to activate mononuclear macrophages. To identify how NLRP 3 functions, several small-molecule inhibitors were used. The results showed that NLRP 3 regulates smooth muscle cell proliferation and migration through Smad2/3 phosphorylation rather than through caspase-1/interleukin-1 signaling. Unexpectedly, the selective NLRP 3-inflammasome inhibitor MCC 950 also repressed Smad2/3 phosphorylation and relieved chronic kidney disease-promoted AVF failure independent of macrophages. Conclusions Our findings suggest that NLRP 3 in vascular smooth muscle cells may play a crucial role in uremia-associated AVF failure and may be a promising therapeutic target for the treatment of AVF failure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。