SARS-CoV-2 Transmission Risk Model in an Urban Area of Mexico, Based on GIS Analysis and Viral Load

基于 GIS 分析和病毒载量的墨西哥城市地区 SARS-CoV-2 传播风险模型

阅读:5
作者:Victor Wagner Barajas-Carrillo, Carlos Eduardo Covantes-Rosales, Mercedes Zambrano-Soria, Lucia Amapola Castillo-Pacheco, Daniel Alberto Girón-Pérez, Ulises Mercado-Salgado, Ansonny Jhovanny Ojeda-Durán, Erica Yolanda Vázquez-Pulido, Manuel Iván Girón-Pérez

Abstract

The COVID-19 pandemic highlighted health systems vulnerabilities, as well as thoughtlessness by governments and society. Due to the nature of this contingency, the use of geographic information systems (GIS) is essential to understand the SARS-CoV-2 distribution dynamics within a defined geographic area. This work was performed in Tepic, a medium-sized city in Mexico. The residence of 834 COVID-19 infected individuals was georeferenced and categorized by viral load (Ct). The analysis took place during the maximum contagion of the first four waves of COVID-19 in Mexico, analyzing 158, 254, 143, and 279 cases in each wave respectively. Then heatmaps were built and categorized into five areas ranging from very low to very high risk of contagion, finding that the second wave exhibited a greater number of cases with a high viral load. Additionally, a spatial analysis was performed to measure urban areas with a higher risk of contagion, during this wave this area had 19,203.08 km2 (36.11% of the city). Therefore, a kernel density spatial model integrated by meaningful variables such as the number of infected subjects, viral load, and place of residence in cities, to establish geographic zones with different degrees of infection risk, could be useful for decision-making in future epidemic events.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。