Sclerocarya birrea (Marula) Extract Inhibits Hepatic Steatosis in db/db Mice

硬壳果(马鲁拉)提取物可抑制 db/db 小鼠的肝脂肪变性

阅读:7
作者:Lawrence Mabasa, Anri Kotze, Samukelisiwe Shabalala, Clare Kimani, Kwazi Gabuza, Rabia Johnson, Nonhlakanipho F Sangweni, Vinesh Maharaj, Christo J F Muller

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a spectrum of hepatic metabolic perturbations ranging from simple steatosis to steatohepatitis, cirrhosis and hepatocellular carcinoma. Currently, lifestyle modifications to reduce weight gain are considered the most effective means of preventing and treating the disease. The aim of the present study was to determine the therapeutic benefit of Sclerocarya birrea (Marula leaf extract, MLE) on hepatic steatosis. Obese db/db mice were randomly stratified into the obese control, metformin (MET) or MLE-treated groups. Mice were treated daily for 29 days, at which point all mice were euthanized and liver samples were collected. Hematoxylin and eosin staining was used for histological assessment of the liver sections, while qRT-PCR and Western blot were used to determine hepatic mRNA and protein expression, respectively. Thereafter, the association between methylenetetrahydrofolate reductase (Mthfr a key enzyme in one-carbon metabolism and DNA-methylation-induced regulation of gene transcription) and lipogenic genes was evaluated using Pearson's correlation coefficient. Mice treated with MLE presented with significantly lower body and liver weights as compared with the obese control and MET-treated mice (p ≤ 0.05). Further, MLE treatment significantly inhibited hepatic steatosis as compared with the obese control and MET-treated mice (p ≤ 0.05). The reduced lipid accumulation was associated with low expression of fatty acid synthase (Cpt1; p ≤ 0.05) and an upregulation of the fatty acid oxidation gene, carnitine palmitoyltransferase (Cpt1; p ≤ 0.01), as compared with the obese control mice. Interestingly, MLE treatment improved the correlation between Mthfr and Cpt1 mRNA expression (r = 0.72, p ≤ 0.01). Taken together, the results suggest that Marula leaf extracts may inhibit hepatic steatosis by influencing the association between Mthfr and genes involved in hepatic lipid metabolism. Further studies are warranted to assess DNA methylation changes in lipid metabolism genes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。