DeepSARS: simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2

DeepSARS:SARS-CoV-2 的同时诊断检测和基因组监测

阅读:10
作者:Alexander Yermanos #, Kai-Lin Hong #, Andreas Agrafiotis, Jiami Han, Sarah Nadeau, Cecilia Valenzuela, Asli Azizoglu, Roy Ehling, Beichen Gao, Michael Spahr, Daniel Neumeier, Ching-Hsiang Chang, Andreas Dounas, Ezequiel Petrillo, Ina Nissen, Elodie Burcklen, Mirjam Feldkamp, Christian Beisel, Annett

Background

The continued spread of SARS-CoV-2 and emergence of new variants with higher transmission rates and/or partial resistance to vaccines has further highlighted the need for large-scale testing and genomic surveillance. However, current diagnostic testing (e.g., PCR) and genomic surveillance

Conclusions

DeepSARS sets the foundation for quantitative diagnostics that capture viral evolution and diversity. DeepSARS uses molecular barcodes (BCs) and multiplexed targeted deep sequencing (NGS) to enable simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2. Image was created using Biorender.com .

Results

Here, we developed DeepSARS, a high-throughput platform for simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2 by the integration of molecular barcoding, targeted deep sequencing, and computational phylogenetics. DeepSARS enables highly sensitive viral detection, while also capturing genomic diversity and viral evolution. We show that DeepSARS can be rapidly adapted for identification of emerging variants, such as alpha, beta, gamma, and delta strains, and profile mutational changes at the population level. Conclusions: DeepSARS sets the foundation for quantitative diagnostics that capture viral evolution and diversity. DeepSARS uses molecular barcodes (BCs) and multiplexed targeted deep sequencing (NGS) to enable simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2. Image was created using Biorender.com .

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。