Notch1 activation of Jagged1 contributes to differentiation of mesenchymal stem cells into endothelial cells under cigarette smoke extract exposure

Notch1 激活 Jagged1 有助于香烟烟雾提取物暴露下间充质干细胞向内皮细胞分化

阅读:4
作者:Yi Cheng #, Wen Gu #, Guorui Zhang, Xuejun Guo

Background

Mesenchymal stem cells (MSCs) have shown therapeutic potential for engraftment to, differentiation into, endothelial cells (ECs). However, low-efficiency yields hinder their use as ECs for therapeutic vascularization.

Conclusions

Notch signaling pathway promotes differentiation of MSCs in to ECs. It also regulates angiogenesis and transcription of specific markers on ECs. These results provide a mechanism that regulates differentiation of MSCs into ECs phenotypes.

Methods

The Notch1 signaling pathway is key to optimal pulmonary development. Recent evidence has shown that this pathway participated in angiogenesis. Herein, we found that in MSCs, Jagged1 was a target for Notch 1, resulting in a positive feedback loop that propagated a wave of ECs differentiation.

Results

In vitro, Jagged1 was found to be activated by Notch1 in MSCs, resulting in the RBP-Jκ-dependent expression of Jagged1 mRNA, a response that was blocked by Notch1 inhibition. Notch1 promoted the formation of cord-like structures on Matrigel. However, cigarette smoke extract inhibited this process, compared to that in control groups. Moreover, Notch1-overexpressing cells upregulated the expressing of HIF-1α gene. The HIF-1α was an angiogenic factor that clustered with Notch1, underscoring the critical role of Notch1 pathway in vessel assembly. Interestingly, this was abrogated by incubation with Notch1 shRNA. Conclusions: Notch signaling pathway promotes differentiation of MSCs in to ECs. It also regulates angiogenesis and transcription of specific markers on ECs. These results provide a mechanism that regulates differentiation of MSCs into ECs phenotypes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。