RPL15 promotes hepatocellular carcinoma progression via regulation of RPs-MDM2-p53 signaling pathway

RPL15通过调节RPs-MDM2-p53信号通路促进肝细胞癌进展

阅读:6
作者:Rui Shi, Zirong Liu

Conclusions

RPL15 played crucial roles in HCC progression and metastasis, serving as a promising candidate for targeted therapies.

Methods

The expression of RPL15 in clinical tissues and cell lines of HCC was detected by RT-qPCR, Western blotting, and Immunohistochemistry (IHC). Colony formation, CCK-8, flow cytometry, Wound healing and Transwell invasion assays, were used to detect the carcinoma progression of HCC cells with RPL15 overexpression or knockdown in vitro. A xenograft model was constructed to assess the effect of RPL15 knockdown on HCC cells in vivo. The expression of CDK2 and Cyclin E1 related to cell cycles, Bax and Bcl-2 related to cell apoptosis, E-cadherin, N-cadherin and Vimentin related to epithelial-mesenchymal transition (EMT), p53 and p21 related to p53 signaling pathway, were detected by Western blotting. The connection between p53, MDM2 and RPL5/11 affected by RPL15 was analyzed using immunoprecipitation and Cycloheximide (CHX) chase assay.

Results

Elevated RPL15 was identified in HCC tissues, which was not only a prediction for the poor prognosis of HCC patients, but also associated with the malignant progression of HCC. RPL15 silencing arrested HCC cell cycle, suppressed HCC cell colony formation, proliferation, invasion, and migration, and induce cell apoptosis. On the contrary, RPL15 upregulation exerted opposite effects. Results also indicated that HCC cell invasion and migration were associated with EMT, and that the RPs-MDM2-p53 pathway was implicated in RPL15-mediated oncogenic transformation. In addition, RPL15 knockdown significantly suppressed HCC xenografts growth. Conclusions: RPL15 played crucial roles in HCC progression and metastasis, serving as a promising candidate for targeted therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。