p32-Dependent p38 MAPK Activation by Arginase II Downregulation Contributes to Endothelial Nitric Oxide Synthase Activation in HUVECs

精氨酸酶 II 下调导致 p32 依赖性 p38 MAPK 激活,进而促进 HUVEC 中的内皮型一氧化氮合酶激活

阅读:6
作者:Bon-Hyeock Koo, Moo-Ho Won, Young-Myeong Kim, Sungwoo Ryoo

Abstract

Arginase II reciprocally regulates endothelial nitric oxide synthase (eNOS) through a p32-dependent Ca2+ control. We investigated the signaling pathway of arginase II-dependent eNOS phosphorylation. Western blot analysis was applied for examining protein activation and [Ca2+]c was analyzed by microscopic and FACS analyses. Nitric oxide (NO) and reactive oxygen species (ROS) productions were measured using specific fluorescent dyes under microscopy. NO signaling pathway was tested by measuring vascular tension. Following arginase II downregulation by chemical inhibition or gene knockout (KO, ArgII-/-), increased eNOS phosphorylation at Ser1177 and decreased phosphorylation at Thr495 was depend on p38 MAPK activation, which induced by CaMKII activation through p32-dependent increase in [Ca2+]c. The protein amount of p32 negatively regulated p38 MAPK activation. p38 MAPK contributed to Akt-induced eNOS phosphorylation at Ser1177 that resulted in accelerated NO production and reduced reactive oxygen species production in aortic endothelia. In vascular tension assay, p38 MAPK inhibitor decreased acetylcholine-induced vasorelaxation responses and increased phenylephrine-dependent vasoconstrictive responses. In ApoE-/- mice fed a high cholesterol diet, arginase II inhibition restored p32/CaMKII/p38 MAPK/Akt/eNOS signaling cascade that was attenuated by p38 MAPK inhibition. Here, we demonstrated a novel signaling pathway contributing to understanding of the relationship between arginase II, endothelial dysfunction, and atherogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。