NAMPT-dependent NAD+ salvage is crucial for the decision between apoptotic and necrotic cell death under oxidative stress

NAMPT 依赖的 NAD+ 挽救对于氧化应激下细胞凋亡和坏死性死亡的决定至关重要

阅读:6
作者:Takuto Nishida, Isao Naguro, Hidenori Ichijo

Abstract

Oxidative stress is a state in which the accumulation of reactive oxygen species exceeds the capacity of cellular antioxidant systems. Both apoptosis and necrosis are observed under oxidative stress, and we have reported that these two forms of cell death are induced in H2O2-stimulated HeLa cells depending on the concentration of H2O2. Weak H2O2 stimulation induces apoptosis, while strong H2O2 stimulation induces necrosis. However, the detailed mechanisms controlling the switching between these forms of cell death depending on the level of oxidative stress remain elusive. Here, we found that NAD+ metabolism is a key factor in determining the form of cell death in H2O2-stimulated HeLa cells. Under both weak and strong H2O2 stimulation, intracellular nicotinamide adenine dinucleotide (NAD+) was depleted to a similar extent by poly (ADP-ribose) (PAR) polymerase 1 (PARP1)-dependent consumption. However, the intracellular NAD+ concentration recovered under weak H2O2 stimulation but not under strong H2O2 stimulation. NAD+ recovery was mediated by nicotinamide (NAM) phosphoribosyltransferase (NAMPT)-dependent synthesis via the NAD+ salvage pathway, which was suggested to be impaired only under strong H2O2 stimulation. Furthermore, downstream of NAD+, the dynamics of the intracellular ATP concentration paralleled those of NAD+, and ATP-dependent caspase-9 activation via apoptosome formation was thus impaired under strong H2O2 stimulation. Collectively, these findings suggest that NAD+ dynamics balanced by PARP1-dependent consumption and NAMPT-dependent production are important to determine the form of cell death activated under oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。