Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation

抑制过度线粒体裂变可减少 LRRK2 G2019S 突变引起的异常自噬和神经元损伤

阅读:8
作者:Yu-Chin Su, Xin Qi

Abstract

LRRK2 G2019S mutation is the most common genetic cause of Parkinson's disease (PD). Cellular pathology caused by this mutant is associated with mitochondrial dysfunction and augmented autophagy. However, the underlying mechanism is not known. In this study, we determined whether blocking excessive mitochondrial fission could reduce cellular damage and neurodegeneration induced by the G2019S mutation. In both LRRK2 G2019S-expressing cells and PD patient fibroblasts carrying this specific mutant, treatment with P110, a selective peptide inhibitor of fission dynamin-related protein 1 (Drp1) recently developed in our lab, reduced mitochondrial fragmentation and damage, and corrected excessive autophagy. LRRK2 G2019S directly bound to and phosphorylated Drp1 at Threonine595, whereas P110 treatment abolished this phosphorylation. A site-directed mutant, Drp1(T595A), corrected mitochondrial fragmentation, improved mitochondrial mass and suppressed excessive autophagy in both cells expressing LRRK2 G2019S and PD patient fibroblasts carrying the mutant. Further, in dopaminergic neurons derived from LRRK2 G2019S PD patient-induced pluripotent stem cells, we demonstrated that either P110 treatment or expression of Drp1(T595A) reduced mitochondrial impairment, lysosomal hyperactivity and neurite shortening. Together, we propose that inhibition of Drp1-mediated excessive mitochondrial fission might be a strategy for treatment of PD relevant to LRRK2 G2019S mutation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。