Damage-associated molecular pattern recognition is required for induction of retinal neuroprotective pathways in a sex-dependent manner

损伤相关分子模式识别是诱导性别依赖性视网膜神经保护通路所必需的

阅读:9
作者:Marcus J Hooper, Jiangang Wang, Robert Browning, John D Ash

Abstract

Retinal degeneration is a common cause of irreversible blindness and is caused by the death of retinal light-sensitive neurons called photoreceptors. At the onset of degeneration, stressed photoreceptors cause retinal glial cells to secrete neuroprotective factors that slow the pace of degeneration. Leukemia inhibitory factor (LIF) is one such factor that is required for endogenous neuroprotection. Photoreceptors are known to release signals of cellular stress, called damage-associated molecular patterns (DAMPs) early in degeneration, and we hypothesized that receptors for DAMPs or pattern recognition receptors (PRRs) play a key role in the induction of LIF and neuroprotective stress responses in retinal glial cells. Toll-like receptor 2 (TLR2) is a well-established DAMP receptor. In our experiments, activation of TLR2 protected both male and female mice from light damage, while the loss of TLR2 in female mice did not impact photoreceptor survival. In contrast, induction of protective stress responses, microglial phenotype and photoreceptor survival were strongly impacted in male TLR2-/- mice. Lastly, using publicly available gene expression data, we show that TLR2 is expressed highly in resting microglia prior to injury, but is also induced in Müller cells in inherited retinal degeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。