Stat5b inhibition blocks proliferation and tumorigenicity of glioblastoma stem cells derived from a de novo murine brain cancer model

Stat5b 抑制可阻断源自新生鼠脑癌模型的胶质母细胞瘤干细胞的增殖和致瘤性

阅读:7
作者:Chiami Moyama, Mitsugu Fujita, Shota Ando, Keiko Taniguchi, Hiromi Ii, Seisuke Tanigawa, Naoya Hashimoto, Susumu Nakata

Abstract

Glioblastoma (GBM) is the most common and malignant type of brain cancer in adults with poor prognosis. GBM stem cells (GSCs) reside within niches in GBM tissues and contribute to recurrence and therapy resistance. Previous studies have shown that expression of leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), a Wnt pathway-related stem cell marker, correlates with a poor prognosis in GBM, and its knockdown in GSCs induces apoptosis accompanied with downregulation of signal transducer and activator of transcription 5b (Stat5b). Here, we show that Stat5b co-localizes with Lgr5 in hypoxia-inducible factor 2α (Hif2α)-positive regions in GBM tissues. Functional analyses using GSCs derived from a murine de novo GBM model induced by oncogenic genes transduction using the Sleeping-Beauty transposon system revealed that expression of Stat5b was induced by culturing under hypoxia together with Lgr5, repressed by Hif2α knockdown, and reduced by Lgr5 knockdown or a Wnt/β-catenin signaling inhibitor ICG-001 treatment. Stat5b inhibition in the GSCs induced apoptosis and caused downregulation of Cyclin E2 resulted in blockade of entry into S-phase in the cell cycle. Disruption of Stat5b in an orthotopic transplantation model significantly prolongs event-free survival. These results suggest that Stat5b, regulated by hypoxia and the Wnt pathway, plays an important role in the maintenance and tumorigenicity of GSCs and may be a promising therapeutic molecular target to attack GSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。