miRNA-independent function of long noncoding pri-miRNA loci

长非编码 pri-miRNA 位点的独立于 miRNA 的功能

阅读:5
作者:Daniel He, David Wu, Soren Muller, Lin Wang, Parna Saha, Sajad Hamid Ahanger, Siyuan John Liu, Miao Cui, Sung Jun Hong, Miten Jain, Hugh E Olson, Mark Akeson, Joseph F Costello, Aaron Diaz, Daniel A Lim

Abstract

Among the large, diverse set of mammalian long noncoding RNAs (lncRNAs), long noncoding primary microRNAs (lnc-pri-miRNAs) are those that host miRNAs. Whether lnc-pri-miRNA loci have important biological function independent of their cognate miRNAs is poorly understood. From a genome-scale lncRNA screen, lnc-pri-miRNA loci were enriched for function in cell proliferation, and in glioblastoma (i.e., GBM) cells with DGCR8 or DROSHA knockdown, lnc-pri-miRNA screen hits still regulated cell growth. To molecularly dissect the function of a lnc-pri-miRNA locus, we studied LOC646329 (also known as MIR29HG), which hosts the miR-29a/b1 cluster. In GBM cells, LOC646329 knockdown reduced miR-29a/b1 levels, and these cells exhibited decreased growth. However, genetic deletion of the miR-29a/b1 cluster (LOC646329-miR29Δ) did not decrease cell growth, while knockdown of LOC646329-miR29Δ transcripts reduced cell proliferation. The miR-29a/b1-independent activity of LOC646329 corresponded to enhancer-like activation of a neighboring oncogene (MKLN1), regulating cell propagation. The LOC646329 locus interacts with the MKLN1 promoter, and antisense oligonucleotide knockdown of the lncRNA disrupts these interactions and reduces the enhancer-like activity. More broadly, analysis of genome-wide data from multiple human cell types showed that lnc-pri-miRNA loci are significantly enriched for DNA looping interactions with gene promoters as well as genomic and epigenetic characteristics of transcriptional enhancers. Functional studies of additional lnc-pri-miRNA loci demonstrated cognate miRNA-independent enhancer-like activity. Together, these data demonstrate that lnc-pri-miRNA loci can regulate cell biology via both miRNA-dependent and miRNA-independent mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。