Skepinone-L, a novel potent and highly selective inhibitor of p38 MAP kinase, effectively impairs platelet activation and thrombus formation

Skepinone-L 是一种新型强效、高选择性 p38 MAP 激酶抑制剂,可有效抑制血小板活化和血栓形成

阅读:6
作者:Oliver Borst, Britta Walker, Patrick Münzer, Antonella Russo, Evi Schmid, Caterina Faggio, Boris Bigalke, Stefan Laufer, Meinrad Gawaz, Florian Lang

Aims

Platelets are critically important for primary haemostasis and the major players in thrombotic vascular occlusion. Platelets are activated by agonists, such as thrombin and collagen-related peptide as well as second-wave mediators including thromboxane A2 via different intracellular signaling pathways resulting in degranulation, aggregation and thrombus formation. Platelet activation is paralleled by phosphorylation and activation of p38 MAPK. The limited specificity of hitherto known p38 MAPK inhibitors precluded safe conclusions on the precise role of p38 MAPK in the regulation of platelet function. The present study examined the impact of Skepinone-L, a novel and highly selective inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), on platelet activation and thrombus formation.

Background/aims

Platelets are critically important for primary haemostasis and the major players in thrombotic vascular occlusion. Platelets are activated by agonists, such as thrombin and collagen-related peptide as well as second-wave mediators including thromboxane A2 via different intracellular signaling pathways resulting in degranulation, aggregation and thrombus formation. Platelet activation is paralleled by phosphorylation and activation of p38 MAPK. The limited specificity of hitherto known p38 MAPK inhibitors precluded safe conclusions on the precise role of p38 MAPK in the regulation of platelet function. The present study examined the impact of Skepinone-L, a novel and highly selective inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), on platelet activation and thrombus formation.

Conclusions

The present study discloses a powerful inhibiting effect of p38 MAPK-blocker Skepinone-L on platelet activation and thrombus formation.

Methods

Experiments were performed in freshly isolated human platelets. Protein phosphorylation was quantified by Western blotting, thromboxane B2 synthesis by enzyme immunoassay, ATP release by ChronoLume luciferin assay, cytosolic Ca(2+) concentration by Fura-2 fluorescence-measurements, platelet aggregation by a light transmissions measurement and in vitro thrombus formation by a flow chamber.

Results

Skepinone-L (1 μM) virtually abrogated the phosphorylation of platelet p38 MAPK substrate Hsp27 following stimulation with CRP (1 μg/ml), thrombin (5 mU/ml) or thromboxane A2 analogue U-46619 (1 μM). Furthermore, Skepinone-L significantly blunted activation-dependent platelet secretion and aggregation following threshold concentrations of CRP, thrombin and thromboxane A2 analogue U-46619. Skepinone-L did not impair platelet Ca(2+) signaling but prevented agonist-induced thromboxane A2 synthesis through abrogation of p38 MAPK-dependent phosphorylation of platelet cytosolic phospholipase A2 (cPLA2). Skepinone-L further markedly blunted thrombus formation under low (500-s) and high (1700-s) arterial shear rates. Conclusions: The present study discloses a powerful inhibiting effect of p38 MAPK-blocker Skepinone-L on platelet activation and thrombus formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。