Small extracellular vesicles derived from patients with persistent atrial fibrillation exacerbate arrhythmogenesis via miR-30a-5p

持续性心房颤动患者的细胞外小囊泡通过 miR-30a-5p 加剧心律失常

阅读:6
作者:Dasom Mun, Hyoeun Kim, Ji-Young Kang, Nuri Yun, Young-Nam Youn, Boyoung Joung

Abstract

Small extracellular vesicles (sEVs) are nanometer-sized membranous vesicles that contribute to the pathogenesis of atrial fibrillation (AF). Here, we investigated the role of sEVs derived from patients with persistent AF in the pathophysiology of AF. First, we evaluated the pathological effects of sEVs derived from the peripheral blood of patients with persistent AF (AF-sEVs). AF-sEVs treatment reduced cell viability, caused abnormal Ca2+ handling, induced reactive oxygen species (ROS) production and led to increased CaMKII activation of non-paced and paced atrial cardiomyocytes. Next, we analyzed the miRNA profile of AF-sEVs to investigate which components of AF-sEVs promote arrhythmias, and we selected six miRNAs that correlated with CaMKII activation. qRT-PCR experiment identified that miR-30a-5p was significantly down-regulated in AF-sEVs, paced cardiomyocytes, and atrial tissues of patients with persistent AF. CaMKII was predicted by bioinformatics analysis as a miR-30a-5p target gene and validated by a dual luciferase reporter; hence, we evaluated the effects of miR-30a-5p on paced cardiomyocytes and validated miR-30a-5p as a pro-arrhythmic signature of AF-sEVs. Consequently, AF-sEVs-loaded with miR-30a-5p attenuated pacing-induced Ca2+-handling abnormalities, whereas AF-sEVs-loaded with anti-miR-30a-5p reversed the change in paced cardiomyocytes. Taken together, the regulation of CaMKII by miR-30a-5p revealed that miR-30a-5p is a major mediator for AF-sEVs-mediated AF pathogenesis. Accordingly, these findings suggest that sEVs derived from patients with persistent AF exacerbate arrhythmogenesis via miR-30a-5p.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。